H(t)=-16t^2+440

Simple and best practice solution for H(t)=-16t^2+440 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+440 equation:



(H)=-16H^2+440
We move all terms to the left:
(H)-(-16H^2+440)=0
We get rid of parentheses
16H^2+H-440=0
a = 16; b = 1; c = -440;
Δ = b2-4ac
Δ = 12-4·16·(-440)
Δ = 28161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28161}=\sqrt{9*3129}=\sqrt{9}*\sqrt{3129}=3\sqrt{3129}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{3129}}{2*16}=\frac{-1-3\sqrt{3129}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{3129}}{2*16}=\frac{-1+3\sqrt{3129}}{32} $

See similar equations:

| 1/2x-11=1/3 | | 8x/8=0 | | Y+9=6y-6 | | 8(x+3/8)-3=0 | | 25,000-2x=0 | | 16x+21=15-2x | | 10^2x-3=7 | | 3/1-4x/5=(4+x)/5 | | 8c+5(c+-6)=9 | | 3/1-4x/5=4+x/5 | | Y+3=6y-9 | | 2x2−7x−21=0 | | 45=21(2)^t/18 | | x-0.3x=3 | | x2+2x−7=0 | | 378-x=72 | | 5x-(9x+4)=2x-46 | | 63r+7/r=9r+1/r3 | | 32+3n=302 | | -0.1013x+0.0040x^2=0 | | -0.1013x+0.0040x²=0 | | 15a+7.5(2a)=150 | | 87=31^x | | 0.05n+0.10(235-5n)=2.35 | | x/2+3x=1/2 | | 24x^2=960000 | | -6x-12=60 | | q=4.3=8.6 | | t÷2-25=17 | | x=3+0.3x | | !/2x8x8+16+16=32 | | e-83=17 |

Equations solver categories